
vWith the Calculus as a key, Mathematics can be successfully applied to the

explanation of the course of Nature – WHITEHEAD v

12.1  Introduction

This chapter is an introduction to Calculus. Calculus is that

branch of mathematics which mainly deals with the study

of change in the value of a function as the points in the

domain change. First, we give an intuitive idea of derivative

(without actually defining it). Then we give a naive definition

of limit and study some algebra of limits. Then we come

back to a definition of derivative and study some algebra

of derivatives. We also obtain derivatives of certain

standard functions.

12.2  Intuitive Idea of Derivatives

Physical experiments have confirmed that the body dropped

from a tall cliff covers a distance of 4.9t2 metres in t seconds,

i.e., distance s in metres covered by the body as a function of time t in seconds is given

by s = 4.9t2.

The adjoining Table 13.1 gives the distance travelled in metres at various intervals

of time in seconds of a body dropped from a tall cliff.

The objective is to find the veloctiy of the body at time t = 2 seconds from this

data. One way to approach this problem is to find the average velocity for various

intervals of time ending at t = 2 seconds and hope that these throw some light on the

velocity at t = 2 seconds.

Average velocity between t = t
1
 and t = t

2
 equals distance travelled between

 t = t
1
 and t = t

2  
seconds divided by  (t

2
 – t

1
). Hence the average velocity in the first

two seconds

12Chapter

LIMITS AND DERIVATIVES

Sir Issac Newton

(1642-1727)

Reprint 2025-26



218 MATHEMATICS

=
2 1

2 1

Distance travelled between 2 0

Time interval ( )

t and t

t t

= =

−

=
( )
( )

19.6 0
9.8 /

2 0

m
m s

s

−
=

−
.

Similarly, the average velocity between t = 1

 
and t = 2 is

( )
( )

19.6 – 4.9

2 1

m

s−
= 14.7 m/s

Likewise we compute the average velocitiy

between t = t
1
 and t = 2 for various t

1
. The following

Table 13.2 gives the average velocity (v), t = t
1

seconds and t = 2 seconds.

Table 12.2

t
1

0 1 1.5 1.8 1.9 1.95 1.99

v 9.8 14.7 17.15 18.62 19.11 19.355 19.551

From Table 12.2, we observe that the average velocity is gradually increasing.

As we make the time intervals ending at t = 2 smaller, we see that we get a better idea

of the velocity at t = 2. Hoping that nothing really dramatic happens between 1.99

seconds and 2 seconds, we conclude that the average velocity at t = 2 seconds is just

above 19.551m/s.

This conclusion is somewhat strengthened by the following set of computation.

Compute the average velocities for various time intervals starting at t = 2 seconds. As

before the average velocity v between t = 2 seconds and t = t
2
 seconds is

= 
2

2

Distance  travelled between 2 seconds and seconds

2

t

t −

= 2

2

Distance  travelled in seconds  Distance travelled in 2 seconds

2

t

t

−

−

t s

0 0

1 4.9

1.5 11.025

1.8 15.876

1.9 17.689

1.95 18.63225

2 19.6

2.05 20.59225

2.1 21.609

2.2 23.716

2.5 30.625

3 44.1

4 78.4

Table 12.1
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= 2

2

Distance  travelled in seconds  19.6

2

t

t

−

−

The following Table 12.3 gives the average velocity v in metres per second

between t = 2 seconds and t
2
 seconds.

Table 12.3

t
2

4 3 2.5 2.2 2.1 2.05 2.01

v 29.4 24.5 22.05 20.58 20.09 19.845 19.649

Here again we note that if we take smaller time intervals starting at t = 2, we get

better idea of the velocity at t = 2.

In the first set of computations, what we have done is to find average velocities

in increasing time intervals ending at t = 2 and then hope that nothing dramatic happens

just before t = 2. In the second set of computations, we have found the average velocities

decreasing in time intervals ending at t = 2 and then hope that nothing dramatic happens

just after t = 2. Purely on the physical grounds, both these sequences of average

velocities must approach a common limit. We can safely conclude that the velocity of

the body at t = 2 is between 19.551m/s and 19.649 m/s. Technically, we say that the

instantaneous velocity at t = 2 is between 19.551 m/s and 19.649 m/s. As is

well-known, velocity is the rate of change of displacement. Hence what we have

accomplished is the following. From the given data of distance covered at various time

instants we have estimated the rate of

change of the distance at a given instant

of time. We say that the derivative of

the distance function s = 4.9t2 at t = 2

is between 19.551 and 19.649.

An alternate way of viewing this

limiting process is shown in Fig 12.1.

This is a plot of distance s of the body

from the top of the cliff versus the time

t elapsed. In the limit as the sequence

of time intervals h
1
, h

2
, ..., approaches

zero, the sequence of average velocities

approaches the same limit as does the

sequence of ratios Fig 12.1
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3 31 1 2 2

1 2 3

C BC B C B
, ,

AC AC AC
, ...

where C
1
B

1
 = s

1
 – s

0
 is the distance travelled by the body in the time interval h

1
 = AC

1
,

etc. From the Fig 12.1 it is safe to conclude that this latter sequence approaches the

slope of the tangent to the curve at point A. In other words, the instantaneous velocity

v(t) of a body at time t = 2 is equal to the slope of the tangent of the curve s = 4.9t2 at

t = 2.

12.3 Limits

The above discussion clearly points towards the fact that we need to understand limit-

ing process in greater clarity. We study a few illustrative examples to gain some famil-

iarity with the concept of limits.

Consider the function f(x) = x2. Observe that as x takes values very close to 0,

the value of f(x) also moves towards 0 (See Fig 2.10 Chapter 2). We say

( )
0

lim 0
x

f x
→

=

(to be read as limit of f (x) as x tends to zero equals zero).  The limit of f (x) as x tends

to zero is to be thought of as the value f (x) should assume at x = 0.

In general as x → a, f (x) → l, then l is called limit of the function f (x) which is

symbolically written as ( )lim
x a

f x l
→

= .

Consider the following function g(x) = |x|, x ≠ 0. Observe that g(0) is not defined.

Computing the value of g(x) for values of x very

near to 0, we see that the value of g(x) moves

towards 0. So, 
0

lim
x→  g(x) = 0. This is intuitively

clear from the graph of y = |x| for x ≠ 0.

(See Fig 2.13, Chapter 2).

Consider the following function.

( )
2

4
, 2

2

x
h x x

x

−
= ≠

−
.

Compute the value of h(x) for values  of

x very near to 2 (but not at 2). Convince yourself

that all these values are near to 4. This is

somewhat strengthened by considering the graph

of the function y = h(x) given here (Fig 12.2). Fig 12.2
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In all these illustrations the value which the function should assume at a given

point x = a did not really depend on how is x tending to a. Note that there are essentially

two ways x could approach a number a  either from left or from right, i.e., all the

values of x near a could be less than a or could be greater than a. This naturally leads

to two limits – the right hand limit and the left hand limit. Right hand limit of a

function f(x) is that value of f(x) which is dictated by the values of f(x) when x tends

to a from the right. Similarly, the left hand limit. To illustrate this, consider the function

( )
1, 0

2, 0

x
f x

x

≤
= 

>

Graph of this function is shown in the Fig 12.3. It is

clear that the value of f at 0 dictated by values of f(x) with

x ≤ 0 equals 1, i.e., the left hand limit of f (x) at 0 is

0
lim ( ) 1
x

f x
→

= .

Similarly, the value of f at 0 dictated by values of

f (x) with x > 0 equals 2, i.e., the right hand limit of f (x)

at 0 is

0
lim ( ) 2
x

f x
+→

= .

In this case the right and left hand limits are different, and hence we say that the

limit of f (x) as x tends to zero does not exist (even though the function is defined at 0).

Summary

  We say lim
x a→ –  f(x) is the expected value of  f at x = a given the values of f near

x to the left of a. This value is called the left hand limit of f at a.

We say lim ( )
x a

f x
+→

 is the expected value of f at x = a given the values of

f near x to the right of a. This value is called the right hand limit of f(x) at a.

If the right and left hand limits coincide, we call that common value as the limit

of f(x) at x = a and denote it by lim
x a→  f(x).

Illustration 1 Consider the function f(x) = x + 10. We want to find the limit of this

function at x = 5. Let us compute the value of the function f(x) for x very near to 5.

Some   of the points near and to the left of 5 are 4.9, 4.95, 4.99, 4.995. . ., etc. Values

of the function at these points are tabulated below. Similarly, the real number 5.001,

Fig 12.3

Reprint 2025-26



222 MATHEMATICS

5.01, 5.1 are also points near and to the right of 5. Values of the function at these points

are also given in the Table 12.4.

Table 12.4

From the Table 12.4, we deduce that value of f(x) at x = 5 should be greater than

14.995 and less than 15.001 assuming nothing dramatic happens between x = 4.995

and 5.001. It is reasonable to assume that the value of the f(x) at x = 5 as dictated by

the numbers to the left of 5 is 15, i.e.,

( )
–5

lim 15
x

f x
→

= .

Similarly, when x approaches 5 from the right,  f(x) should be taking value 15, i.e.,

( )
5

lim 15
x

f x
+→

= .

Hence, it is likely that the left hand limit of f(x) and the right hand limit of f(x) are

both equal to 15. Thus,

( ) ( ) ( )
55 5

lim lim lim 15
xx x

f x f x f x
− + →→ →

= = = .

This conclusion about the limit being equal to 15 is somewhat strengthened by

seeing the graph of this function which is given in Fig 2.16, Chapter 2. In this figure, we

note that as x approaches 5 from either right or left, the graph of the function

f(x) = x +10 approaches the point (5, 15).

We observe that the value of the function at x = 5 also happens to be equal to 15.

Illustration 2 Consider the function f(x) = x3. Let us try to find the limit of this

function at x = 1. Proceeding as in the previous case, we tabulate the value of f(x) at

x near 1. This is given in the Table 12.5.

Table 12.5

From this table, we deduce that value of f(x) at x = 1 should be greater than

0.997002999 and less than 1.003003001 assuming nothing dramatic happens between

x 0.9 0.99 0.999 1.001 1.01 1.1

f(x) 0.729 0.970299 0.997002999 1.003003001 1.030301 1.331

x 4.9 4.95 4.99 4.995 5.001 5.01 5.1

f(x) 14.9 14.95 14.99 14.995 15.001 15.01 15.1
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x = 0.999 and 1.001. It is reasonable to assume that the value of the f(x) at x = 1 as

dictated by the numbers to the left of 1 is 1, i.e.,

( )
1

lim 1
x

f x
−→

= .

Similarly, when x approaches 1 from the right, f(x) should be taking value 1, i.e.,

( )
1

lim 1
x

f x
+→

= .

Hence, it is likely that the left hand limit of f(x) and the right hand limit of f(x) are

both equal to 1. Thus,

( ) ( ) ( )
11 1

lim lim lim 1
xx x

f x f x f x
− + →→ →

= = = .

This conclusion about the limit being equal to 1 is somewhat strengthened by

seeing the graph of this function which is given in Fig 2.11, Chapter 2. In this figure, we

note that as x approaches 1 from either right or left, the graph of the function

f(x) = x3 approaches the point (1, 1).

We observe, again, that the value of the function at x = 1 also happens to be

equal to 1.

Illustration 3 Consider the function f(x) = 3x. Let us try to find the limit of this

function at x = 2. The following Table 12.6 is now self-explanatory.

Table 12.6

x 1.9 1.95 1.99 1.999 2.001 2.01 2.1

f(x) 5.7 5.85 5.97 5.997 6.003 6.03 6.3

As before we observe that as x  approaches 2

from either left or right, the value of f(x) seem to

approach 6. We record this as

( ) ( ) ( )
22 2

lim lim lim 6
xx x

f x f x f x
− + →→ →

= = =

Its graph shown in Fig 12.4 strengthens this

fact.

Here again we note that the value of the function

at x = 2 coincides with the limit at x = 2.

Illustration 4 Consider the constant function

f(x) = 3. Let us try to find its limit at x = 2. This

function being the constant function takes the same Fig 12.4

Reprint 2025-26



224 MATHEMATICS

value (3, in this case) everywhere, i.e., its value at points close to 2 is 3. Hence

( ) ( ) ( )
2 22

lim lim lim 3
x xx

f x f x f x
+→ →→

= = =

Graph of f(x) = 3 is anyway the line parallel to x-axis passing through (0, 3) and

is shown in Fig 2.9, Chapter 2. From this also it is clear that the required limit is 3. In

fact, it is easily observed that ( )lim 3
x a

f x
→

=  for any real number a.

Illustration 5 Consider the function f(x) = x2 + x. We want to find ( )
1

lim
x

f x
→

. We

tabulate the values of f(x) near x = 1 in Table 12.7.

Table 12.7

x 0.9 0.99 0.999 1.01 1.1 1.2

f(x) 1.71 1.9701 1.997001 2.0301 2.31 2.64

From this it is reasonable to deduce that

( ) ( ) ( )
11 1

lim lim lim 2
xx x

f x f x f x
− + →→ →

= = = .

From the graph of f(x) = x2 + x

shown in the Fig 12.5,  it is clear that as x

approaches 1, the graph approaches (1, 2).

Here, again we observe that the

1
lim
x→

 f (x) = f (1)

Now, convince yourself of the

following three facts:

2

1 1 1
lim 1, lim 1 and lim 1 2
x x x

x x x
→ → →

= = + =

Then
2 2

1 1 1
lim lim 1 1 2 lim
x x x

x x x x
→ → →

 + = + = = +  .

Also ( ) ( ) 2

1 1 1 1
lim . lim 1 1.2 2 lim 1 lim
x x x x

x x x x x x
→ → → →

  + = = = + = +    .

Fig 12.5
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Illustration 6 Consider the function f(x) = sin x.  We are interested in 

2

lim sin
x

x
π

→
,

where the angle is measured in radians.

Here, we tabulate the (approximate) value of f(x) near 
2

π
(Table 12.8). From

this, we may deduce that

( ) ( ) ( )
22 2

lim lim lim 1
xx x

f x f x f x
− + ππ π →→ →

= = =
.

Further, this is supported by the graph of f(x) = sin x which is given in the Fig 3.8

(Chapter 3). In this case too, we observe that 

2

lim
x

π
→

 sin x = 1.

Table 12.8

x 0.1
2

π
− 0.01

2

π
− 0.01

2

π
+ 0.1

2

π
+

f(x) 0.9950 0.9999 0.9999 0.9950

Illustration 7 Consider the function f(x) = x + cos x. We want to find the 
0

lim
x→

f (x).

Here we tabulate the (approximate) value of f(x) near 0 (Table 12.9).

Table 12.9

From the Table 13.9, we may deduce that

( ) ( ) ( )
00 0

lim lim lim 1
xx x

f x f x f x
− + →→ →

= = =

In this case too, we observe that 
0

lim
x→

f (x) = f (0) = 1.

Now, can you convince yourself that

[ ]
0 0 0

lim cos lim lim cos
x x x

x x x x
→ → →

+ = +  is indeed true?

x – 0.1 – 0.01 – 0.001 0.001 0.01 0.1

f(x) 0.9850 0.98995 0.9989995 1.0009995 1.00995 1.0950
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Illustration 8 Consider the function ( )
2

1
f x

x
=  for 0x > . We want to know 

0
lim
x→

f (x).

Here, observe that the domain of the function is given to be all positive real

numbers. Hence, when we tabulate the values of f(x), it does not make sense to talk of

x approaching 0 from the left. Below we tabulate the values of the function for positive

x close to 0 (in this table n denotes any positive integer).

From the Table 12.10 given below, we see that as x tends to 0, f(x) becomes

larger and larger. What we mean here is that the value of f(x) may be made larger than

any given number.

Table 12.10

x 1 0.1 0.01 10–n

f(x) 1 100 10000 102n

Mathematically, we say

( )
0

lim
x

f x
→

= +∞

We also remark that we will not come across such limits in this course.

Illustration 9 We want to find ( )
0

lim
x

f x
→

, where

( )
2, 0

0 , 0

2, 0

x x

f x x

x x

− <
= =
 + >

As usual we make a table of x near 0 with f(x). Observe that for negative values of x

we need to evaluate x – 2 and for positive values, we need to evaluate x + 2.

Table 12.11

From the first three entries of the Table 12.11, we deduce that the value of the

function is decreasing to –2 and hence.

( )
0

lim 2
x

f x
−→

= −

x – 0.1 – 0.01 – 0.001 0.001 0.01 0.1

f(x) – 2.1 – 2.01 – 2.001 2.001 2.01 2.1
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From the last three entires of the table we deduce that the value of the function

is increasing from 2 and hence

( )
0

lim 2
x

f x
+→

=

Since the left and right hand limits at 0 do not coincide,

we say that the limit of the function at 0 does not exist.

  Graph of this function is given in the Fig12.6. Here,

we remark that the value of the function at x = 0 is well

defined and is, indeed, equal to 0, but the limit of the function

at x = 0 is not even defined.

Illustration 10 As a final illustration, we find ( )
1

lim
x

f x
→

,

where

( )
2 1

0 1

x x
f x

x

+ ≠
= 

=

Table 12.12

x 0.9 0.99 0.999 1.001 1.01 1.1

f(x) 2.9 2.99 2.999 3.001 3.01 3.1

As usual we tabulate the values of f(x) for x near 1. From the values of f(x) for

x less than 1, it seems that the function should take value 3 at x = 1., i.e.,

( )
1

lim 3
x

f x
−→

= .

Similarly, the value of f(x) should be 3 as dic-

tated by values of f(x) at x greater than 1. i.e.

( )
1

lim 3
x

f x
+→

= .

But then the left and right hand limits coin-

cide and hence

        ( ) ( ) ( )
11 1

lim lim lim 3
xx x

f x f x f x
− + →→ →

= = = .

Graph of function given in Fig 12.7 strength-

ens our deduction about the limit. Here, we

Fig 12.6

Fig 12.7
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note that  in general, at a given point the value of the function and its limit may be

different (even when both are defined).

12.3.1  Algebra of limits In the above illustrations, we have observed that the limiting

process respects addition, subtraction, multiplication and division as long as the limits

and functions under consideration are well defined. This is not a coincidence. In fact,

below we formalise these as a theorem without proof.

Theorem 1 Let f  and g be two functions such that both lim
x a→

 f (x) and  lim
x a→

 g(x) exist.

Then

  (i) Limit of sum of two functions is sum of the limits of the functions, i.e.,

lim
x a→

[f(x) + g (x)] =  lim
x a→

 f(x) +  lim
x a→

 g(x).

 (ii) Limit of difference of two functions is difference of the limits of the functions, i.e.,

lim
x a→

[f(x) – g(x)] =  lim
x a→

 f(x) –  lim
x a→

 g(x).

(iii) Limit of product of two functions is product of the limits of the functions, i.e.,

lim
x a→

 [f(x) . g(x)] =  lim
x a→

 f(x).  lim
x a→

 g(x).

(iv) Limit of quotient of two functions is quotient of the limits of the functions (whenever

the denominator is non zero), i.e.,

( )
( )

( )
( )

lim
lim

lim

x a

x a

x a

f xf x

g x g x

→

→
→

=

ANote In particular as a special case of (iii), when g is the constant function

such that  g(x) = λ , for some real number λ , we have

( ) ( ) ( )lim . .lim
x a x a

f x f x
→ →

 λ = λ  .

In the next two subsections, we illustrate how to exploit this theorem to evaluate

limits of special types of functions.

12.3.2  Limits of polynomials and rational functions A function f is said to be a

polynomial function of degree n f(x) = a
0
 + a

1
x + a

2
x2 +. . . + a

n
xn, where a

i
s are real

numbers such that a
n
 ≠ 0 for some natural number n.

We know that lim
x a→

x = a. Hence
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( )2 2lim lim . lim .lim .
x a x a x a x a

x x x x x a a a
→ → → →

= = = =

An easy exercise in induction on n tells us that

lim n n

x a
x a

→
=

Now, let ( ) 2
0 1 2 ... n

nf x a a x a x a x= + + + +  be a polynomial function. Thinking

of each of 2
0 1 2, , ,..., n

na a x a x a x  as a function, we have

( )lim
x a

f x
→

=
2

0 1 2lim ... n
n

x a
a a x a x a x

→
 + + + + 

= 
2

0 1 2lim lim lim ... lim n
n

x a x a x a x a
a a x a x a x

→ → → →
+ + + +

= 
2

0 1 2lim lim ... lim n
n

x a x a x a
a a x a x a x

→ → →
+ + + +

= 2
0 1 2 ... n

na a a a a a a+ + + +

= ( )f a

(Make sure that you understand the justification for each step in the above!)

A function f is said to be a rational function, if f(x) = 
( )
( )

g x

h x
, where g(x) and h(x)

are polynomials such that h(x) ≠ 0. Then

( ) ( )
( )

( )
( )

( )
( )

lim
lim lim

lim

x a

x a x a

x a

g xg x g a
f x

h x h x h a

→

→ →
→

= = =

However, if h(a) = 0, there are two scenarios – (i) when g(a) ≠ 0 and (ii) when

g(a) = 0. In the former case we say that the limit does not exist. In the latter case we

can write g(x) = (x – a)k g
1 
(x), where k is the maximum of powers of (x – a) in g(x)

Similarly, h(x) = (x – a)l h
1
 (x) as h (a) = 0. Now, if k > l, we have

( )
( )
( )

( ) ( )

( ) ( )
1

1

lim lim
lim

lim lim

k

x a x a

lx a

x a x a

g x x a g x
f x

h x x a h x

→ →

→
→ →

−
= =

−

Reprint 2025-26



230 MATHEMATICS

= 

( )( ) ( )
( )

( )
( )

1
1

1 1

lim 0.
0

lim

k l

x a

x a

x a g x g a

h x h a

−

→

→

−
= =

If k < l, the limit is not defined.

Example 1 Find the limits:  (i)  
3 2

1
lim 1
x

x x
→

 − +      (ii)  ( )
3

lim 1
x

x x
→

 + 

(iii)
2 10

1
lim 1 ...
x

x x x
→−

 + + + +  .

Solution The required limits are all limits of some polynomial functions. Hence the

limits are the values of the function at the prescribed points. We have

(i)
1

lim
x→

 [x3 – x2 + 1] = 13 – 12 + 1 = 1

(ii) ( ) ( ) ( )
3

lim 1 3 3 1 3 4 12
x

x x
→

 + = + = = 

(iii)
2 10

1
lim 1 ...
x

x x x
→−

 + + + +   ( ) ( ) ( )2 10
1 1 1 ... 1= + − + − + + −

        1 1 1... 1 1= − + + = .

Example 2 Find the limits:

(i)

2

1

1
lim

100x

x

x→

 +
 + 

(ii)

3 2

22

4 4
lim

4x

x x x

x→

 − +
 

− 

(iii)

2

3 22

4
lim

4 4x

x

x x x→

 −
 

− + 
(iv)

3 2

22

2
lim

5 6x

x x

x x→

 −
 

− + 

(v) 2 3 21

2 1
lim

3 2x

x

x x x x x→

− − − − + 
.

Solution All the functions under consideration are rational functions. Hence, we first

evaluate these functions at the prescribed points. If this is of the form 
0

0
, we try to

rewrite the function cancelling the factors which are causing the limit to be of

the form 
0

0
.
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(i) We have 
2 2

1

1 1 1 2
lim

100 1 100 101x

x

x→

+ +
= =

+ +

(ii) Evaluating the function at 2, it is of the form 
0

0
.

Hence

3 2

22

4 4
lim

4x

x x x

x→

− +

−
 =

( )
( )( )

2

2

2
lim

2 2x

x x

x x→

−

+ −

=
( )
( )2

2
lim as 2

2x

x x
x

x→

−
≠

+

 =
( )2 2 2 0

0
2 2 4

−
= =

+
.

(iii) Evaluating the function at 2, we get it of the form 
0

0
.

Hence

2

3 22

4
lim

4 4x

x

x x x→

−

− +
 =

( )( )
( )22

2 2
lim

2x

x x

x x→

+ −

−

=
( )
( ) ( )2

2 2 2 4
lim

2 2 2 2 0x

x

x x→

+ +
= =

− −

which is not defined.

(iv) Evaluating the function at 2, we get it of the form  
0

0
.

Hence

3 2

22

2
lim

5 6x

x x

x x→

−

− +
 =

( )
( )( )

2

2

2
lim

2 3x

x x

x x→

−

− −

= ( )
( )22

2

2 4
lim 4

3 2 3 1x

x

x→
= = = −

− − −
.
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(v) First, we rewrite the function as a rational function.

2 3 2

2 1

3 2

x

x x x x x

− − − − + 
 = ( ) ( )2

2 1

1 3 2

x

x x x x x

 − −
 − − + 

= ( ) ( )( )
2 1

1 1 2

x

x x x x x

 −
− 

− − −  

= ( )( )

2 4 4 1

1 2

x x

x x x

 − + −
 

− −  

= ( )( )

2
4 3

1 2

x x

x x x

− +
− −

Evaluating the function at 1, we get it of the form 
0

0
.

Hence

2

2 3 21

2 1
lim

3 2x

x

x x x x x→

 −
− 

− − + 
= ( )( )

2

1

4 3
lim

1 2x

x x

x x x→

− +
− −

=
( )( )
( )( )1

3 1
lim

1 2x

x x

x x x→

− −

− −

= ( )1

3
lim

2x

x

x x→

−
−  = ( )

1 3

1 1 2

−
−  = 2.

We remark that we could cancel the term (x – 1) in the above evaluation because

1x ≠ .

Evaluation of an important limit which will be used in the sequel is given as a

theorem below.

Theorem 2 For any positive integer n,

1
lim

n n
n

x a

x a
na

x a

−

→

−
=

−
.

Remark The expression in the above theorem for the limit is true even if n is any

rational number and a is positive.
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Proof Dividing (xn – an) by (x – a), we see that

xn – an = (x–a) (xn–1 + xn–2 a + xn–3 a2 + ... + x an–2 + an–1)

Thus, lim lim
n n

x a x a

x a

x a→ →

−
=

−
(xn–1 + xn–2 a + xn–3 a2 + ... + x an–2 + an–1)

= an – l + a an–2 +. . . + an–2 (a) +an–l

= an–1 + an – 1 +...+an–1 + an–1 (n terms)

=
1n

na
−

Example 3 Evaluate:

(i)  

15

101

1
lim

1x

x

x→

−

−
(ii) 

0

1 1
lim
x

x

x→

+ −

Solution (i) We have

15

101

1
lim

1x

x

x→

−

−
=

15 10

1

1 1
lim

1 1x

x x

x x→

 − −
÷ − − 

=

15 10

1 1

1 1
lim lim

1 1x x

x x

x x→ →

   − −
÷   − −   

= 15 (1)14 ÷ 10(1)9   (by the theorem above)

= 15 ÷ 10
3

2
=

(ii) Put y = 1 + x, so that 1y →  as 0.x →

Then
0

1 1
lim
x

x

x→

+ −
 =

1

1
lim

–1y

y

y→

−

=

1 1

2 2

1

1
lim

1y

y

y→

−
−

=

1
1

2
1

(1)
2

−
 (by the remark above)  =

1

2
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12.4 Limits of Trigonometric Functions

The following facts (stated as theorems) about functions in general come in handy in

calculating limits of some trigonometric functions.

Theorem 3 Let f and g be two real valued functions with the same domain such that

f (x) ≤ g( x) for all x in the domain of definition, For some a, if both lim
x a→

 f(x) and

lim
x a→

 g(x) exist, then lim
x a→

 f(x) ≤ lim
x a→

 g(x). This is illustrated in Fig 12.8.

Theorem 4 (Sandwich Theorem) Let f, g and h be real functions such that

f (x) ≤ g( x) ≤ h(x) for all x in the common domain of definition. For some real number

a, if lim
x a→

  f(x) = l = lim
x a→

 h(x), then lim
x a→

 g(x) = l. This is illustrated in Fig 12.9.

Given below is a beautiful geometric proof of the following important

inequality relating trigonometric functions.

sin
cos 1

x
x

x
< < for 

π
0

2
x< < (*)

Fig 12.8

Fig 12.9
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Proof  We know that sin (– x) =  – sin x and cos( – x) = cos x. Hence, it is sufficient

to prove the inequality for 
π

0
2

x< < .

In the Fig 12.10, O is the centre of the unit circle such that

the angle AOC is x radians and 0 < x < 
π

2
. Line segments B A and

CD are perpendiculars to OA. Further, join AC. Then

Area of OAC∆ < Area of sector OAC < Area of ∆ OAB.

i.e.,
21 1

OA.CD .π.(OA) OA.AB
2 2π 2

x
< < .

i.e., CD < x . OA < AB.

From ∆ OCD,

sin x = 
CD

OA
(since OC = OA) and hence CD = OA sin x. Also  tan x =

AB

OA
and

hence AB = OA. tan x. Thus

OA sin x < OA. x < OA. tan x.

Since length OA is positive, we have

sin x < x < tan x.

Since 0 < x <
π

2
, sinx is positive and thus by dividing throughout by sin x, we have

1<
1

sin cos

x

x x
< . Taking reciprocals throughout, we have

sin
cos 1

x
x

x
< <

which complete the proof.

Theorem 5 The following are two important limits.

(i) 
0

sin
lim 1
x

x

x→
= . (ii) 

0

1 cos
lim 0
x

x

x→

−
= .

Proof (i) The  inequality in (*) says that the function 
sin x

x
is sandwiched between the

function cos x and the constant function which takes value 1.

Fig 12.10
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Further, since 
0

lim
x→  cos x = 1, we see that the proof of (i) of the theorem is

complete by sandwich theorem.

To prove (ii), we recall the trigonometric identity 1 – cos x = 2 sin2

2

x 
 
 

.

Then

0

1 cos
lim
x

x

x→

−
 =

2

0 0

2sin sin
2 2

lim lim .sin
2

2

x x

x x

x

xx→ →

   
        =  

 

=
0 0

sin
2

lim .limsin 1.0 0
2

2

x x

x

x

x→ →

 
     = = 

 

Observe that we have implicitly used the fact that 0x →  is equivalent to 0
2

x
→ . This

may be justified by putting y = 
2

x
.

Example 4 Evaluate: (i) 
0

sin 4
lim

sin 2x

x

x→
(ii) 

0

tan
lim
x

x

x→

Solution (i)
0

sin 4
lim

sin 2x

x

x→ 0

sin 4 2
lim . .2

4 sin 2x

x x

x x→

 =   

= 
0

sin 4 sin 2
2.lim

4 2x

x x

x x→

   
÷      

= 
4 0 2 0

sin 4 sin 2
2. lim lim

4 2x x

x x

x x→ →

   ÷      

= 2.1.1 = 2 (as x → 0, 4x → 0 and 2x → 0)
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(ii) We have  
0

tan
lim
x

x

x→
 =

0

sin
lim

cosx

x

x x→
 = 

0 0

sin 1
lim . lim

cosx x

x

x x→ →
 = 1.1 = 1

A general rule that needs to be kept in mind while evaluating limits is the following.

Say, given that the limit  
( )
( )

lim
x a

f x

g x→  exists and we want to evaluate this. First we check

the value of f (a)  and g(a). If both are 0, then we see if we can get the factor which

is causing the terms to vanish, i.e., see if we can write f(x) = f
1
 (x) f

2
(x) so that

f
1
 (a) = 0 and f

2
 (a) ≠ 0. Similarly, we write g(x) = g

1
 (x) g

2
(x), where g

1
(a) = 0 and

g
2
(a) ≠ 0. Cancel out the common factors from f(x) and g(x) (if possible) and write

( )
( )

( )
( )

f x p x

g x q x
= , where q(x) ≠ 0.

Then
( )
( )

( )
( )

lim
x a

f x p a

g x q a→
= .

EXERCISE 12.1

Evaluate the following limits in Exercises 1 to 22.

1.
3

lim 3
x

x
→

+ 2.
π

22
lim

7x
x

→

 
− 

 
3.

2

1
lim π
r

r
→

4.
4

4 3
lim

2x

x

x→

+

−
5.

10 5

1

1
lim

1x

x x

x→ −

+ +
−

6.
( )5

0

1 1
lim
x

x

x→

+ −

7.  

2

22

3 10
lim

4x

x x

x→

− −

−
8.

4

23

81
lim

2 5 3x

x

x x→

−

− −
9.

0
lim

1x

ax b

cx→

+

+

10. 

1

3

11
6

1
lim

1
z

z

z
→

−

−
11.

2

21
lim , 0
x

ax bx c
a b c

cx bx a→

+ +
+ + ≠

+ +

12. 
2

1 1

2lim
2x

x

x→−

+

+
13.

0

sin
lim
x

ax

bx→
14.  

0

sin
lim , , 0

sinx

ax
a b

bx→
≠
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15. 
( )
( )π

sin π
lim

π πx

x

x→

−

− 16.
0

cos
lim

πx

x

x→ −
17.

0

cos 2 1
lim

cos 1x

x

x→

−

−

18. 
0

cos
lim

sinx

ax x x

b x→

+
19.

0
lim sec
x

x x
→

20.  
0

sin
lim , , 0

sinx

ax bx
a b a b

ax bx→

+
+ ≠

+
, 21.

0
lim (cosec cot )
x

x x
→

−

22.  π

2

tan 2
lim

π

2
x

x

x→ −

23.  Find ( )
0

lim
x

f x
→

 and ( )
1

lim
x

f x
→

, where ( ) ( )
2 3, 0

3 1 , 0

x x
f x

x x

+ ≤
=  + >

24.  Find ( )
1

lim
x

f x
→

, where ( )
2

2

1, 1

1, 1

x x
f x

x x

 − ≤= 
− − >

25.  Evaluate ( )
0

lim
x

f x
→

, where ( )
| |

, 0

0, 0

x
x

f x x

x


≠

= 
 =

26.  Find ( )
0

lim
x

f x
→

, where ( )
, 0

| |

0, 0

x
x

xf x

x

 ≠
= 
 =

27.  Find ( )
5

lim
x

f x
→

, where ( ) | | 5f x x= −

28.  Suppose ( )
, 1

4, 1

, 1

a bx x

f x x

b ax x

+ <


= =
 − >

and if 
1

lim
x→

f (x) = f (1) what are possible values of a and b?
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29. Let a
1
, a

2
, . . ., a

n
 be fixed real numbers and define a function

( ) ( ) ( ) ( )1 2 ... nf x x a x a x a= − − − .

What is 
1

lim
x a→

f (x) ? For some a ≠ a
1
, a

2
, ..., a

n
, compute lim

x a→
 f (x).

30. If  ( )
1, 0

0, 0

1, 0

x x

f x x

x x

 + <


= =
 − >

.

For what value (s) of a does lim
x a→

f (x) exists?

31. If the function f(x) satisfies 
( )

21

2
lim π

1x

f x

x→

−
=

−
, evaluate ( )

1
lim
x

f x
→

.

32.  If ( )

2

3

, 0

, 0 1

, 1

mx n x

f x nx m x

nx m x

 + <


= + ≤ ≤
 + >

. For what integers m and n does both ( )
0

lim
x

f x
→

and ( )
1

lim
x

f x
→

exist?

12.5  Derivatives

We have seen in the Section 13.2, that by knowing the position of a body at various

time intervals it is possible to find the rate at which the position of the body is changing.

It is of very general interest to know a certain parameter at various instants of time and

try to finding the rate at which it is changing. There are several real life situations

where such a process needs to be carried out. For instance, people maintaining a

reservoir need to know when will a reservoir overflow knowing the depth of the water

at several instances of time, Rocket Scientists need to compute the precise velocity

with which the satellite needs to be shot out from the rocket knowing the height of the

rocket at various times. Financial institutions need to predict the changes in the value of

a particular stock knowing its present value. In these, and many such cases it is desirable

to know how a particular parameter is changing with respect to some other parameter.

The heart of the matter is derivative of a function at a given point in its domain

of definition.
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Definition 1 Suppose f is a real valued function and a is a point in its domain of

definition. The derivative of  f  at a is defined by

( ) ( )
0

lim
h

f a h f a

h→

+ −

provided this limit exists. Derivative of f (x) at a is denoted by f′(a).

Observe that f′ (a) quantifies the change in  f(x) at a with respect to x.

Example 5 Find the derivative at x = 2 of the function f(x) = 3x.

Solution We have

f′ (2) = 
( ) ( )

0

2 2
lim
h

f h f

h→

+ −
= 

( ) ( )
0

3 2 3 2
lim
h

h

h→

+ −

= 
0 0 0

6 3 6 3
lim lim lim3 3
h h h

h h

h h→ → →

+ −
= = = .

The derivative of the function 3x at x = 2 is 3.

Example 6 Find the derivative of the function f(x) = 2x2 + 3x – 5 at x =  –1. Also prove

that f ′ (0) + 3f ′ ( –1) = 0.

Solution We first find the derivatives of f(x) at x = –1 and at x = 0. We have

( )' 1f − = 
( ) ( )

0

1 1
lim
h

f h f

h→

− + − −

= 
( ) ( ) ( ) ( )2 2

0

2 1 3 1 5 2 1 3 1 5
lim
h

h h

h→

   − + + − + − − − + − −
   

= ( ) ( )
2

0 0

2
lim lim 2 1 2 0 1 1
h h

h h
h

h→ →

−
= − = − = −

and     ( )' 0f =
( ) ( )

0

0 0
lim
h

f h f

h→

+ −

= 
( ) ( ) ( ) ( )2 2

0

2 0 3 0 5 2 0 3 0 5
lim
h

h h

h→

   + + + − − + −
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= ( ) ( )
2

0 0

2 3
lim lim 2 3 2 0 3 3
h h

h h
h

h→ →

+
= + = + =

Clearly ( ) ( )' 0 3 ' 1 0f f+ − =

Remark At this stage note that evaluating derivative at a point involves effective use

of various rules, limits are subjected to. The following illustrates this.

Example 7 Find the derivative of sin x at x = 0.

Solution Let f(x) = sin x. Then

f ′(0) = 
( ) ( )

0

0 0
lim
h

f h f

h→

+ −

= 
( ) ( )

0

sin 0 sin 0
lim
h

h

h→

+ −
 = 

0

sin
lim 1
h

h

h→
=

Example 8 Find the derivative of f(x) = 3 at x = 0 and at x = 3.

Solution Since the derivative measures the change in function, intuitively it is clear

that the derivative of the constant function must be zero at every point. This is indeed,

supported by the following computation.

( )' 0f =
( ) ( )

0 0 0

0 0 3 3 0
lim lim lim 0
h h h

f h f

h h h→ → →

+ − −
= = = .

Similarly ( )' 3f  =
( ) ( )

0 0

3 3 3 3
lim lim 0
h h

f h f

h h→ →

+ − −
= = .

We now present a geomet-

ric interpretation of derivative of a

function at a point. Let y = f(x) be

a function and let P = (a, f(a)) and

Q = (a + h, f(a + h) be two points

close to each other on the graph

of this function. The Fig 12.11 is

now self explanatory.

Fig 12.11
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We know that  ( ) ( ) ( )
0

lim
h

f a h f a
f a

h→

+ −
′ =

From the triangle PQR, it is clear that the ratio whose limit we are taking is

precisely equal to tan(QPR) which is the slope of the chord PQ. In the limiting process,

as h tends to 0, the point Q tends to P and we have

( ) ( )
0 Q P

QR
lim lim

PRh

f a h f a

h→ →

+ −
=

This is equivalent to the fact that the chord PQ tends to the tangent at P of the

curve y = f(x). Thus the limit turns out to be equal to the slope of the tangent. Hence

( ) tanψf a′ = .

For a given function f  we can find the derivative at every point. If the derivative

exists at every point, it defines a new function called the derivative of f . Formally, we

define derivative of a function as follows.

Definition 2 Suppose f  is a real valued function, the function defined by

( ) ( )
0

lim
h

f x h f x

h→

+ −

wherever the limit exists is defined to be the derivative of f at x and is denoted by

f′(x). This definition of derivative is also called the first principle of derivative.

Thus ( ) ( ) ( )
0

' lim
h

f x h f x
f x

h→

+ −
=

Clearly the domain of definition of f′ (x) is wherever the above limit exists. There

are different notations for derivative of a function. Sometimes f′ (x) is denoted by

( )( )d
f x

dx
 or  if y = f(x), it is denoted by 

dy

dx
. This is referred to as derivative of f(x)

or y with respect to x. It is also denoted by D (f (x) ). Further, derivative of  f at x = a

is also denoted by ( ) or
a a

d df
f x

dx dx
 or even 

x a

df

dx =

 
 
 

.

Example 9 Find the derivative of f(x) = 10x.

Solution Since f′ ( x) = 
( ) ( )

0
lim
h

f x h f x

h→

+ −

Reprint 2025-26



  LIMITS AND DERIVATIVES            243

= 
( ) ( )

0

10 10
lim
h

x h x

h→

+ −

= 
0

10
lim
h

h

h→
 = ( )

0
lim 10 10
h→

= .

Example 10 Find the derivative of f(x) = x2.

Solution We have, f ′(x)  =  
( ) ( )

0
lim
h

f x h f x

h→

+ −

= 
( ) ( )2 2

0
lim
h

x h x

h→

+ −
 = ( )

0
lim 2 2
h

h x x
→

+ =

Example 11 Find the derivative of the constant function f (x) = a for a fixed real

number a.

Solution We have, f ′(x) =  
( ) ( )

0
lim
h

f x h f x

h→

+ −

= 
0 0

0
lim lim 0
h h

a a

h h→ →

−
= =  as 0h ≠

Example 12 Find the derivative of f(x) = 
1

x

Solution We have  f ′(x) =  
( ) ( )

0
lim
h

f x h f x

h→

+ −

=  
0

1 1
–

( )
lim
h

x h x

h→

+

=  
( )

( )0

1
lim
h

x x h

h x x h→

 − +
 

+  

= ( )0

1
lim
h

h

h x x h→

 −
 

+  
= ( )0

1
lim
h x x h→

−
+ = 2

1

x
−
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12.5.1 Algebra of derivative of functions  Since the very definition of derivatives

involve limits in a rather direct fashion, we expect the rules for derivatives to follow

closely that of limits. We collect these in the following theorem.

Theorem 5 Let f and g be two functions such that their derivatives are defined in a

common domain. Then

(i) Derivative of sum of two functions is sum of the derivatives of the

functions.

( ) ( ) ( ) ( )
d d d

f x g x f x g x
dx dx dx

 + = +  .

(ii) Derivative of difference of two functions is difference of the derivatives of

the functions.

( ) ( ) ( ) ( )
d d d

f x g x f x g x
dx dx dx

 − = −  .

(iii) Derivative of product of two functions is given by the following product

rule.

( ) ( ). ( ) . ( ) ( ) . ( )
d d d

f x g x f x g x f x g x
dx dx dx

  = + 

(iv) Derivative of quotient of two functions is given by the following quotient

rule (whenever the denominator is non–zero).

( )2

( ) . ( ) ( ) ( )
( )

( ) ( )

d d
f x g x f x g x

d f x dx dx

dx g x g x

− 
= 

 

The proofs of these follow essentially from the analogous theorem for limits. We

will not prove these here. As in the case of limits this theorem tells us how to compute

derivatives of special types of functions. The last two statements in the theorem may

be restated in the following fashion which aids in recalling them easily:

Let ( )u f x=  and v = g (x). Then

( )uv ′  = u v uv′ ′+

This is referred to a Leibnitz rule for differentiating product of functions or the

product rule. Similarly, the quotient rule is
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u

v

′ 
 
 

= 2

u v uv

v

′ ′−

Now, let us tackle derivatives of some standard functions.

It is easy to see that the derivative of the function f(x) = x is the constant

function 1. This is because ( )f x′ =
( ) ( )

0
lim
h

f x h f x

h→

+ −
 = 

0
lim
h

x h x

h→

+ −

=
0

lim1 1
h→

= .

We use this and the above theorem to compute the derivative of

f(x) = 10x = x + .... + x (ten terms). By (i) of the above theorem

     
( )df x

dx
 =

d

dx
 ( )...x x+ +  (ten terms)

= . . .
d d

x x
dx dx

+ +   (ten terms)

= 1 ... 1+ +  (ten terms) = 10.

We note that this limit may be evaluated using product rule too. Write

f(x) = 10x = uv, where u is the constant function taking value 10 everywhere and

v(x) = x. Here, f(x) = 10x = uv we know that the derivative of u equals 0. Also

derivative of v(x) = x equals 1. Thus by the product rule we have

( )f x′  = ( ) ( )10 0. 10.1 10x uv u v uv x′ ′ ′ ′= = + = + =

On similar lines the derivative of f(x) = x2 may be evaluated. We have

f(x) = x2 = x .x and hence

df

dx
 = ( ) ( ) ( ). . .

d d d
x x x x x x

dx dx dx
= +

= 1. .1 2x x x+ = .

More generally, we have the following theorem.

Theorem 6 Derivative of f(x) = xn is nxn – 1 for any positive integer n.

Proof By definition of the derivative function, we have

       ( ) ( ) ( )
0

' lim
h

f x h f x
f x

h→

+ −
= =

( )
0

lim

n n

h

x h x

h→

+ −
.
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Binomial theorem tells that (x + h)n = ( ) ( ) ( )1
0 1C C ... Cn n n n n n

nx x h h−+ + + and

hence  (x + h)n – xn = h(nxn – 1 +... + hn – 1). Thus

( )df x

dx
= 

( )
0

lim

n n

h

x h x

h→

+ −

= 
( )1 1

0

....
lim

n n

h

h nx h

h

− −

→

+ +

= ( )1 1

0
lim ...n n

h
nx h− −

→
+ +  = 1n

nx
− .

Alternatively, we may also prove this by induction on n and the product rule as

follows. The result is true for n = 1, which has been proved earlier. We have

( )nd
x

dx
= ( )1. nd

x x
dx

−

= ( ) ( ) ( )1 1. .n nd d
x x x x

dx dx

− −+ (by product rule)

= ( )( )1 21. . 1n nx x n x− −+ −  (by induction hypothesis)

= ( )1 1 11n n nx n x nx− − −+ − = .

Remark The above theorem is true for all powers of x, i.e., n can be any real number

(but we will not prove it here).

12.5.2  Derivative of polynomials and trigonometric functions  We start with the

following theorem which tells us the derivative of a polynomial function.

Theorem 7 Let f(x) = 1
1 1 0....n n

n na x a x a x a−
−+ + + +  be a polynomial function, where

a
i 
s are all real numbers and a

n
 ≠  0. Then, the derivative function is given by

( )1 2
1

( )
1 ...n x

n n

df x
na x n a x

dx

− −
−= + − + +  2 12a x a+ .

Proof of this theorem is just putting together part (i) of Theorem 5 and Theorem 6.

Example 13 Compute the derivative of 6x100 – x55 + x.

Solution A direct application of the above theorem tells that the derivative of the

above function is 99 54
600 55 1x x− + .
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Example 14 Find the derivative of f(x) = 1 + x + x2 + x3 +... + x50 at x = 1.

Solution A direct application of the above Theorem 6 tells that the derivative of the

above function is 1 + 2x + 3x2 + . . . + 50x49. At x = 1 the value of this function equals

1 + 2(1) + 3(1)2 + .. . + 50(1)49 = 1 + 2 + 3 + . . . + 50 = 
( )( )50 51

2
 = 1275.

Example 15 Find the derivative of f(x) = 
1x

x

+

Solution Clearly this function is defined everywhere except at x = 0. We use the

quotient rule with u = x + 1 and v = x. Hence u′ = 1 and v′ = 1. Therefore

     
( ) 1df x d x d u

dx dx x dx v

+   
= =   

   

( ) ( )
2 2 2

1 1 1 1x xu v uv

v x x

− +′ ′−
= = = −

Example 16 Compute the derivative of sin x.

Solution Let f(x) = sin x. Then

( )df x

dx
= 

( ) ( ) ( ) ( )
0 0

sin sin
lim lim
h h

f x h f x x h x

h h→ →

+ − + −
=

= 
0

2
2cos sin

2 2
lim
h

x h h

h→

+   
   
     (using formula for sin A – sin B)

= 0 0

sin
2lim cos .lim cos .1 cos

2

2

h h

h

h
x x x

h→ →

 + = = 
  .

Example 17 Compute the derivative of tan x.

Solution  Let f(x) = tan x. Then

( )df x

dx
= 

( ) ( ) ( ) ( )
0 0

tan tan
lim lim
h h

f x h f x x h x

h h→ →

+ − + −
=

= 
( )
( )0

sin1 sin
lim

cos cosh

x h x

h x h x→

 +
− 

+  
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= 
( ) ( )

( )0

sin cos cos sin
lim

cos cosh

x h x x h x

h x h x→

 + − +
 

+  

= 
( )
( )0

sin
lim

cos cosh

x h x

h x h x→

+ −

+  (using formula for sin (A + B))

= ( )0 0

sin 1
lim .lim

cos cosh h

h

h x h x→ → +

= 
2

2

1
1. sec

cos
x

x
= .

Example 18 Compute the derivative of f(x) = sin2 x.

Solution We use the Leibnitz product rule to evaluate this.

( )( )
sin sin

df x d
x x

dx dx
=

( ) ( )sin sin sin sinx x x x′ ′= +

( ) ( )cos sin sin cosx x x x= +

2sin cos sin 2x x x= = .

EXERCISE 12.2

1. Find the derivative of x2 – 2 at x = 10.

2. Find the derivative of x at x = 1.

3. Find the derivative of 99x at x = l00.

4. Find the derivative of the following functions from first principle.

(i) 3
27x −  (ii)   ( )( )1 2x x− −

(iii) 2

1

x
(iv)   

1

1

x

x

+

−
5. For the function

( )
100 99 2

. . . 1
100 99 2

x x x
f x x= + + + + + .
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Prove that ( ) ( )1 100 0f f′ ′= .

6. Find the derivative of 1 2 2 1. . .n n n n nx ax a x a x a− − −+ + + + +  for some fixed real

number a.

7. For some constants a and b, find the derivative of

 (i) ( ) ( )x a x b− −   (ii)   ( )2
2

ax b+       (iii)  
x a

x b

−

−

8. Find the derivative of 

n n
x a

x a

−
−

 for some constant a.

9. Find the derivative of

(i)
3

2
4

x − (ii)   ( ) ( )35 3 1 1x x x+ − −

(iii) ( )3 5 3x x− + (iv)   ( )5 93 6x x−−

(v) ( )4 53 4x x− −− (vi)   
22

1 3 1

x

x x
−

+ −

10. Find the derivative of cos x from first principle.

11. Find the derivative of the following functions:

(i) sin cosx x (ii)   sec x (iii)  5sec 4cosx x+

(iv) cosec x (v)   3cot 5cosecx x+

(vi) 5sin 6cos 7x x− +            (vii)  2 tan 7secx x−

Miscellaneous Examples

Example 19 Find the derivative of f from the first principle, where f is given by

(i) f (x) = 
2 3

2

x

x

+

−
(ii)    f (x) = 

1
x

x
+

Solution (i) Note that function is not defined at x = 2. But, we have

( ) ( ) ( )
( )

0 0

2 3 2 3

2 2lim lim
h h

x h x
f x h f x x h xf x

h h→ →

+ + +
−+ − + − −′ = =
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= 
( )( ) ( )( )

( )( )0

2 2 3 2 2 3 2
lim

2 2h

x h x x x h

h x x h→

+ + − − + + −

− + −

= 
( )( ) ( ) ( )( ) ( )

( )( )0

2 3 2 2 2 2 3 2 2 3
lim

2 2h

x x h x x x h x

h x x h→

+ − + − − + − − +

− + −

= ( ) ( ) ( )20

–7 7
lim

2 2 2h x x h x→
= −

− + − −

Again, note that the function f ′  is also not defined at x = 2.

(ii) The function is not defined at x = 0. But, we have

( )f x′ = 
( ) ( )

0 0

1 1

lim lim
h h

x h x
f x h f x x h x

h h→ →

   + + − +   + − +   =

= 
0

1 1 1
lim
h

h
h x h x→

 
+ − + 

= ( ) ( )0 0

1 1 1
lim lim 1
h h

x x h
h h

h x x h h x x h→ →

    − −
+ = −     + +       

= ( ) 20

1 1
lim 1 1
h x x h x→

 
− = − 

+  

Again, note that the function f ′  is not defined at x = 0.

Example 20 Find the derivative of f(x) from the first principle, where f(x) is

(i) sin cosx x+ (ii) sinx x

Solution (i) we have ( )'f x  = 
( ) ( )f x h f x

h

+ −

= 
( ) ( )

0

sin cos sin cos
lim
h

x h x h x x

h→

+ + + − −

= 
0

sin cos cos sin cos cos sin sin sin cos
lim
h

x h x h x h x h x x

h→

+ + − − −
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= 
( ) ( ) ( )

0

sin cos sin sin cos 1 cos cos 1
lim
h

h x x x h x h

h→

− + − + −

= ( ) ( )
0 0

cos 1sin
lim cos sin limsin
h h

hh
x x x

h h→ →

−
− +   

( )
0

cos 1
lim cos
h

h
x

h→

−
+

= cos sinx x−

(ii) ( )'f x =
( ) ( ) ( ) ( )

0 0

sin sin
lim lim
h h

f x h f x x h x h x x

h h→ →

+ − + + −
=

=
( )( )

0

sin cos sin cos sin
lim
h

x h x h h x x x

h→

+ + −

=
( ) ( )

0

sin cos 1 cos sin sin cos sin cos
lim
h

x x h x x h h x h h x

h→

− + + +

           = 
( )

0
0

sin cos 1 sin
lim lim cosh
h

x x h h
x x

h h
→

→

−
+ ( )

0
lim sin cos sin cos
h

x h h x
→

+ +

           = cos sinx x x+
Example 21 Compute derivative of

(i) f(x) = sin 2x (ii) g(x) = cot x

Solution (i) Recall the trigonometric formula sin 2x = 2 sin x cos x. Thus

( )df x

dx
= ( ) ( )2sin cos 2 sin cos

d d
x x x x

dx dx
=

( ) ( )2 sin cos sin cosx x x x ′ ′= +  

( ) ( )2 cos cos sin sinx x x x = + − 

( )2 22 cos sinx x= −

(ii) By definition, g(x) = 
cos

cot
sin

x
x

x
= . We use the quotient rule on this function

wherever it is defined.   
cos

(cot )
sin

dg d d x
x

dx dx dx x

 
= =  
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= 2

(cos ) (sin ) (cos )(sin )

(sin )

x x x x

x

′ ′−

= 2

( sin )(sin ) (cos )(cos )

(sin )

x x x x

x

− −

= 
2 2

2

2

sin cos
cosec

sin

x x
x

x

+
− =−

Alternatively, this may be computed by noting that 
1

cot
tan

x
x

= . Here, we use the fact

that the derivative of tan x is sec2 x which we saw in Example 17 and also that the

derivative of the constant function is 0.

dg

dx
= 

1
(cot )

tan

d d
x

dx dx x

 
=  

 

= 2

(1) (tan ) (1)(tan )

(tan )

x x

x

′ ′−

= 

2

2

(0)(tan ) (sec )

(tan )

x x

x

−

= 

2
2

2

sec
cosec

tan

x
x

x

−
= −

Example 22 Find the derivative of

(i) 

5
cos

sin

x x

x

−
(ii) 

cos

tan

x x

x

+

Solution (i) Let 
5

cos
( )

sin

x x
h x

x

−
= . We use the quotient rule on this function wherever

it is defined.

5 5

2

( cos ) sin ( cos )(sin )
( )

(sin )

x x x x x x
h x

x

′ ′− − −′ =
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= 

4 5

2

(5 sin )sin ( cos )cos

sin

x x x x x x

x

+ − −

= 

5 4

2

cos 5 sin 1

(sin )

x x x x

x

− + +

 (ii) We use quotient rule on the function 
cos

tan

x x

x

+
 wherever it is defined.

( )h x′ = 2

( cos ) tan ( cos )(tan )

(tan )

x x x x x x

x

′ ′+ − +

=

2

2

(1 sin ) tan ( cos )sec

(tan )

x x x x x

x

− − +

Miscellaneous Exercise on Chapter 12

1.  Find the derivative of the following functions from first principle:

 (i) x− (ii) 1( )x −− (iii) sin (x + 1) (iv) cos (x – 
π

8
)

Find the derivative of the following functions (it is to be understood that a, b, c, d,

p, q, r and s are fixed non-zero constants and m and n are integers):

2. (x + a) 3. (px + q) 
r

s
x

 
+ 

 
4. ( )( )2

ax b cx d+ +

5.
ax b

cx d

+

+
6.

1
1

1
1

x

x

+

−
7. 2

1

ax bx c+ +

8. 2

ax b

px qx r

+

+ + 9.

2
px qx r

ax b

+ +
+

10. 4 2
cos

a b
x

x x
− +

11. 4 2x − 12. ( )nax b+ 13. ( ) ( )n max b cx d+ +

14. sin (x + a) 15. cosec x cot x 16.
cos

1 sin

x

x+
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17.
sin cos

sin cos

x x

x x

+

−
18.

sec 1

sec 1

x

x

−

+
19. sin

n
x

20.
sin

cos

a b x

c d x

+

+
21.

sin( )

cos

x a

x

+
22. 4 (5sin 3cos )x x x−

23. ( )2 1 cosx x+ 24. ( )( )2 sin cosax x p q x+ +

25. ( ) ( )cos tanx x x x+ − 26.
4 5sin

3 7cos

x x

x x

+

+
27. 

2
cos

4

sin

x

x

π 
 
 

28.
1 tan

x

x+
29. ( ) ( )sec tanx x x x+ − 30.

sinn

x

x

Summary

®The expected value of the function as dictated by the points to the left of a

point defines the left hand limit of the function at that point. Similarly the right

hand limit.

®Limit of a function at a point is the common value of the left and right hand

limits, if they coincide.

®For a function f and a real number a, lim
x a→

 f(x) and f (a) may not be same (In

fact, one may be defined and not the other one).

®For functions f and g the following holds:

[ ]lim ( ) ( ) lim ( ) lim ( )
x a x a x a

f x g x f x g x
→ → →

± = ±

[ ]lim ( ). ( ) lim ( ).lim ( )
x a x a x a

f x g x f x g x
→ → →

=

lim ( )( )
lim

( ) lim ( )

x a

x a

x a

f xf x

g x g x

→

→
→

 
= 

 

®Following are some of the standard limits

1
lim

n n
n

x a

x a
na

x a

−

→

−
=

−
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0

sin
lim 1
x

x

x→
=

0

1 cos
lim 0
x

x

x→

−
=

®The derivative of a function f at a is defined by

0

( ) ( )
( ) lim

h

f a h f a
f a

h→

+ −
′ =

®Derivative of a function f at any point x is defined by

0

( ) ( ) ( )
( ) lim

h

df x f x h f x
f x

dx h→

+ −
′ = =

®For functions u and v the following holds:

( )u v u v′ ′ ′± = ±

( )uv u v uv′ ′ ′= +

2

u u v uv

v v

′ ′ ′−  = 
 

 provided all are defined.

®Following are some of the standard derivatives.

1( )n nd
x nx

dx

−=

(sin ) cos
d

x x
dx

=

(cos ) sin
d

x x
dx

=−

Historical Note

In the history of mathematics two names are prominent to share the credit for

inventing calculus, Issac Newton (1642 – 1727) and G.W. Leibnitz (1646 – 1717).

Both of them independently invented calculus around the seventeenth century.

After the advent of calculus many mathematicians contributed for further

development of calculus. The rigorous concept is mainly attributed to the great
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mathematicians, A.L. Cauchy, J.L.Lagrange and Karl Weierstrass. Cauchy gave

the foundation of calculus as we have now generally accepted in our textbooks.

Cauchy used D’ Alembert’s limit concept to define the derivative of a function.

Starting with definition of a limit, Cauchy gave examples such as the limit of

sinα
α

 for α = 0. He wrote 
( ) ( )

,
y f x i f x

x i

∆ + −
=

∆  and called the limit for

0,i → the “function derive’e, y′ for f ′ (x)”.

Before 1900, it was thought that calculus is quite difficult to teach. So calculus

became beyond the reach of youngsters. But just in 1900, John Perry and others

in England started propagating the view that essential ideas and methods of calculus

were simple and could be taught even in schools. F.L. Griffin, pioneered the

teaching of calculus to first year students. This was regarded as one of the most

daring act in those days.

Today not only the mathematics but many other subjects such as Physics,

Chemistry, Economics and Biological Sciences are enjoying the fruits of calculus.

— vvvvv —
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